

Graph Pad MDH Instructions

Specific Activity Graph: The final product should look like the specific activity example graph shown here. The data is not real nor even close to the values you may get – they are purposefully made up from random values. However it example is to show the expected format and style for your graphs when using graph pad/prism software.

- Start by creating an new column table and graph. There are two options. One where you add all data or another option when you've processed the data to create an average and calculated the statistical measurement (STD DEV or SEM) ahead of time.
 - Your data are 4 to 6 different measurements (1 ml assay) without relationship to other measurements. Thus your data are NOT paired. So you will Enter replicate values (repeats from each enzyme assay) stacked into columns. Click on the options as shown and click "create"
- Enter the name of the enzyme in the title portion of the graph (not in cells for data), then in column format, enter the specific activity of each assay you performed.
- Now check to see if there are outlier data points present.
 First in the main pull-down menu, select analyze -> Data Processing -> Identify Outliers.
 - Then an Analyze Data window will pop up, select the columns you wish to have analyzed (one to all columns of data) and then select "OK"
 - There are two main methods available in GraphPad/Prism. Grubbs and ROUT. Grubbs is to be used to remove only ONE data point per column. ROUT is a method to test for multiple outliers. For this experiment with the smaller numbers, select Grubbs and use the most commonly used alpha value of 0.05.
 - A new window with tabs under the file "Identity Outliers" will appear and you can, by clicking on the tabs see if there is an outlier and which data point is the outlier.
 - There are two options at this point. Use the "cleaned up data" OR and the PREFERED method, is to "mask or hide" the data point without deleting. This operation will hide the outlier from the graph and calculations but keep the integrity of the data without deletion.

		30100		$\Pi \subset \pi \pi$	π III III	C	_ ≥ = 2↓	• 🗠 •	🖌 👘 🎽 🛛	
	Parameters: Identify Outliers	char	าตะ	e ontio			123 #.# ↓	129 J ~	xml -	Т
	Method	onion	.90	opno			G	iroup C	Group D	0
Analyze Change Arrange Family Window Help	ROUT (recommended; can find any number of outlie	Sheet Ur	ndo Cli	pboard Ana	alvsis Interpre	t Change Dra	w ł	MDH	hMDH2 D231A	
Recently Used	O Grubbs' (can only find one outlier)	≩ 🖉 + 🏶 🛠 - 🤇	3 8	🖻 🖷 🗠 🗠 I	Σ	<u>A</u> - *	-			
Data Processing	🗌 Iterative Grubbs' (can find several; not recommende 🛛 🔒 😁	• 💼 +• 🖽 🔅	5 💼	📩 🖛 🗐 Analyz	e 🛅 🥢 🎦	#.# 🔂 🔛 🗔	- 60	0.32	0.05	
Data Exploration and Summary Transform Concentrat	How aggressive?	rch		-			.53	0.28	0.11	
Regression and Curves Normalize	Pomouro Poi V Data v	vith Results	»	E Cleaned data	× 🔳 Outliers	× E Summary ×	.58	0.30	0.04	
Group Comparison Prune Rows	definitive like v []	Data 1		Identify ou Summa	tliers	A B	.48	0.47	0.35*	1
Survival Analysis Remove Baseline and	Alpha = 0.05	Identify outliers			,	Y Y				
Simulation Iranspose X and Y	Subcolumns Vinfo	w Data Table		= Analyze		#.# 💽 9.29		T A	A R I	7 3
Analyze Data File Sheet Undo Identify Outliers	Average the replicates in each row, and then perform Calculation for each column	iject info 1 w Info		Cleaned data $ imes$	Outliers	× 🗐 Summary	× ~			
X ₂ X ² Extract and Rearrange	O Perform the calculation for each subcolumn separate Graph	s	Ide	ntify outliers	A	В	С		D	
	○ Treat all the values in all subcolumns as one set of di	w Graph		Outliers	wgMDH	hMDH1	hMDH2	hM	DH2 D231A	
	▼ Layou	ts		8						
Q- Search Group A	Make these choices the detault for future analyses	w Layout	1	#5					0.350	
cific A V Data with Results >> wgMDH	? Cancel OK		2							

Graph Pad Kinetics V1 JP Nov 2021

Graph Pad MDH Instructions

- Click on the graph icon on the left side of the table and a pop up • window will give you options for your graph the first time you enter data.
 - Select Column and a "bar graph" and select Mean with SEM (standard error of the mean) then click "OK"
 - In the new window, adjust the axis, remove the "X title" and "Data" text by highlighting and deleting the text.
 - Correct the text for the units of specific activity (see example araph above).
 - Statistical Analysis. To compare each mean with each of the • other means a one-way ANOVA is used to compare the means of three or more unmatched groups (which is what this type of experiment is). We assume the population follow a Gaussian distribution and that all of the samples have the same standard deviation (same variance) so a simple ANOVA can be used. Review the information in the statistics handout for background on null hypothesis and why a T test is not appropriate to compare means of more than one set of data.

Write

λ α -

- Ensure that "no matching or pairing", "Yes use ANOVA", and "...Ordinary ANOVA..." are 0 selected.
- Then click on the "Multiple Comparisons" box at the top of the popup menu. 0
- Because there is no control in this test, we want to compare all means to all other column 0 means, so select "Compare the mean of each column with the mean of every other column" in the Multiple Comparisons popup window. Click "OK".
- A new result table will show up on the left side of the Prism window "Ordinary one-way 0 ANOVA. Look for the "Multiple Comparisons" tab and click.
- There is a lot of information there, but for now, focus on the Tukey's test using an alpha value 0 of 0.05. In the first column each column mean being compared is shown. In the summary you will see 1-4 "****" or ns (for not significant). Refer to the statistics handout to understand the meaning and value of the p □ • T T value stars/ns. GraphPad also has a great statistics help section if **** you want more information.
 - Click on the graph icon to show the graph then click on the icon for brackets with statistical information. Brackets with "stars" will appear.
 - Click to remove comparison brackets that are not needed
 - Export as a PNG or JPEG file for your lab book/presentation.

	110			9 0.4	•	→
File Sheet Undo C □ ▼ ∳ ▲ ▼ ↔ ☆ ▼ C of □ ▼ ∲ □ + ▼ ± S C	Clipboard Clipboard	Analysis Interpret Change Draw	Write α τ 14 T T Α Α	N 10.2-		
Q~ Search) e.	ANOVA results × 🔳 Multiple comparisons × v				↓
♥ Data with Results >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>		Ordinary one-way ANOVA				
V Data 1		Multiple comparisons		0.0		
= Ordinary one-way ANOVA	-			wgiv	IDH NMDH1	NMDH2 NMDH2 D231
(+) New Data Table	1	Number of families	1		1	1
Project info 1	2	Number of comparisons per family	6			
 New Info 	3	Alpha	0.05			
♥ Graphs >>>	4					
🗠 Data 1	5	Tukey's multiple comparisons test	Mean Diff.	95.00% CI of diff.	Below threshold?	Summary
⊕ New Graph	6	wgMDH vs. hMDH1	-0.1220	-0.2283 to -0.01568	Yes	•
♥ Layouts >>>	7	wgMDH vs. hMDH2	0.08800	-0.01832 to 0.1943	No	ns
⊕ New Layout	8	wgMDH vs. hMDH2 D231A	0.3725	0.2597 to 0.4853	Yes	••••
	9	hMDH1 vs. hMDH2	0.2100	0.1037 to 0.3163	Yes	***
	10	hMDH1 vs. hMDH2 D231A	0.4945	0.3817 to 0.6073	Yes	****
amily	11	hMDH2 vs. hMDH2 D231A	0.2845	0.1717 to 0.3973	Yes	****

0.8

<u>ر</u>۳

1/mir

Graph Pad Kinetics V1 JP Nov 2021

Biochemistry Lab Graph Pad MDH Instructions

Michalis Menten and Lineweaver Burke (Km & Vmax) Graphs: As above, the data provided for this

example is made up and random numbers used. Calculate the enzyme activity (µmol substrate/min) based on the information in the handout on enzyme assays for the 96 well assay.

- Set up the change in absorbance and perform the conversion to enzyme activity (rate) in a table of rows as shown here.
- Open a new file (XY) table in prism.
 Select enter 6 replicate Y values and leave the X as Numbers.
- Enter the data as seen. Do this for each wild-type MDH and mutant. If you are working on an inhibition each group will be entered for the various inhibitor concentrations.

• • •										Untitle	ed — Edited			
File	Sheet	Undo	CI	lipboard	Analys	is		Change	Import	Draw	Write		Text	
🗋 🕶 💁 🔒	2 • 🛞 🖈 •	C	of	b b	ZCI	B.	₹∎ ∃	→ →	-	* *	ι, α-	12 Y Helvet	ica	✓ <u>A</u>
) +• H	5	Ċ	•	🚍 Analyze	1 /	1 #.#	¹²³ ±29 ♂	r xml		ТТ	A A B I	<u>U</u> x² x₂ ⊯	⊪ ≣• 1≣
Q			8	Tab	ole format:	Х					Gro	oup A		
Restrict: She	et 🔿 is Anv		0		XY	[OAA] r	mM				Data	Set-A		
T Data with P	esults				0	X		A:Y1	A:Y2		A:Y3	A:Y4	A:Y5	A:Y6
Data 1	courto			1	Title	(0.00	0.12376	0.18	564	0.24752	0.06188	0.43316	0.12376
New Dat	a Table			2	Title		7.80	0.68068	0.80	444	0.68068	0.61880	0.68068	0.68068
▼ Info			>>	3	Title	15	5.63	0.92820	0.61	880	1.05196	0.68068	0.92820	0.68068
(i) Project i	nfo 1			4	Title	3	1.25	1.42324	1.113	384	1.11384	1.42324	1.60888	0.99008
① New Info	o			5	Title	62	2.50	1.91828	1.98	016	1.42324	2.41332	2.59896	2.41332
▼ Graphs			>>	6	Title	12	5.00	5.01228	5.01	228	4.20784	4.76476	5.01228	4.20784
🕀 New Gra	.ph			7	Title	250	0.00	6.18800	6.37	364	6.43552	6.37364	6.06424	έ 😐 😐 😐
▼ Layouts			>>	8	Title	500	0.00	8.47756	7.42	560	6.99244	8.35380	7.79688	8
⊕ New Lay	out			9	Title	750	0.00	9.40576	9.03	448	8.16816	9.65328	8.16816	s 🔼
				10	Title	1000	0.00	9.46764	10.27	210	9.52952	9.96268	10.45770	10
				11	Title	1500	0.00	10.95280	11.07	650	10.39580	10.08640	9.59140	8
				12	Title	2000	0.00	9.90080	9.90	080	10.39580	10.21020	10.70520	10 NEW TAB
	0													XY

- Click on Analyze to start creating the MM graph. Under XY analysis, select "Nonlinear regression (curve fit)", click OK.
- Scroll down in the "model" tab of the Parameters popup window and click on "Enzyme kinetics-Velocity as a function of substrate" to expand. You should see the M-M option. DO NOT CLICK OK
- In the menu bar of the popup window, click on and open the "Method". You can use the online Grubbs calculator to determine if you have outliers. Another option is to select the robust regression. This option will peform a basic Grubbs analysis and ignores them for your curve.
- NOW click OK. You should see a new file on the right side called Nonlin fit. This is where the table of results including your Km and Vmax values will be displayed.
- On the left will be a graph icon with the label "Data 1" This is the basic MM graph. If you didn't select earlier, you can click on one

of the data points to change the appearance from Mean to Mean and Error – use the SEM option.

		,	,	
		Appearance	Data Sets on Graph	Graph Settings
Data Set:	Data	1:A		>
Appearance	e: M	ean and Error	\$	Plot: SEM

Graph Pad MDH Instructions

• Adjust your graph to look similar to the example graph above (except the insert graph).

Create the Lineweaver-Burk plot for the insert.

- Record the Km and Vmax from the Nonlit fit table on a scratch pad.
- Click on the data table "Data 1" in the upper left side of the program. Click the "Analyze" button in the toolbar.
- Under "Transform, Normalize..." option, click on "Transform" and <u>click OK</u>.
- In the "Function List" dropdown menu, select "Pharmacology and biochemistry transforms".
- Select the "Lineweaver-Burk" option, you will see several secondary plot options including Lineweaver-Burk. For replicates, select "Transform individual Y values, and "Create new graph of the results" then click OK.
- Add the appropriate line to the Lineweaver-Burk graph.
 - From the graph of the transformed data, click the Analyze button in the Analysis section of the toolbar
 - Scroll down to the "Generate curve" section of analyses, select "Plot a function", and click OK
 - Expand "Lines" and click on "Straight line" from the "Function" tab.
 - Use the "Range of X values" options at the bottom of the Function tab to specify where the line should start and end. Select the higher number of the X axis of the Lineweaver-Burk graph. For this example only use 0.15.

Graph Pad MDH Instructions

	Analy	ze Data					
Use:	Built-in analysis						
Which analysis?		Analyze					
Q Search		Table:					
Transpose X and Y							
Fraction of Total							
▼ XY analyses							
Nonlinear regression (curve fit)						
Simple linear regression	on						
Simple logistic regress	sion						
Fit spline/LOWESS							
Smooth, differentiate or integrate curve							
Area under curve							
Deming (Model II) linear regression							
Row statistics							
Correlation							
Interpolate a standard	curve						
Column analyses							
Grouped analyses							
Contingency table anal	yses						
Survival analyses							
Parts of whole analyses	6						
Multiple variable analys	ses						
Nested analyses							
Generate curve							
Plot a function							
Simulate data							

	+	*
Lines Straight line		
Line through point	(X0, X0)	e Up
Line through point	Move	
Horizontal line		
Semilog line X is	s log, Y is linear	
Semilog line X is	s linear, Y is log	
Log-log line X a	and Y both log	
Segmental linear r	regression	
Continuous hinge	function. Segmental regression lines with gentl	
Cumulative Gaussi	ian Percentages	
Cumulative Gaussi	ian Fractions	
Two intersecting li	ines. Fit the crossing point.	
nber of curves		
Plot one curve	Plot a family of 2 Curves	
nber of curves Plot one curve Ige of X values	Plot a family of 2 Curves	
Plot one curves	Plot a family of 2 0 curves	

- Switch to the "Parameter values & column titles" tab
- Find the values recorded on scratch paper for Vmax and Km, then calculate 1/Vmax and enter this value as the Y Intercept (where Vmax is the value reported by nonlinear regression earlier)
- Enter your calculated Km/Vmax as the Slope.
- o Click OK
- Adjust the axis lable and settings to match that shown above.
- Under "File" export the image as a PNG and then insert into your M-M graph for the final figure.

		Parame	ters: Plot a Function		
	Function	Options	Parameter values 8	column titles	
Choose	Choose curves to r	nodify	Column title		Select All
	Curve A				
To select :	several curves, pres	s Command or S	Shift while selecting.		
Paramete	er Name	Value			Hook
YInterce	ept	•			సి
Slope		•			3